понеділок, 27 березня 2017 р.

Учимся решать олимпиадные задачи
В некоторых олимпиадных задачах важны соображения чётности. Например, число вершин графа, к которым примыкает нечётное число рёбер, всегда чётно. Соображения подобного рода полезны и в других задачах. Так для решения классической задачи: можно ли шахматную доску 8 на 8 клеток без двух клеток в противоположных углах покрыть костяшками домино 1 на 2 – достаточно заметить, что каждая кость домино покрывает две клетки разного цвета (при обычной шахматной раскраске), а угловые клетки – одного цвета. Оставшиеся 62 клетки имеют 32 клетки одного и 30 клеток другого цвета. Покрытие невозможно.